SYNTHESIS OF EURYFURAN, VALDIVIOLIDE, AND CONFERTIFOLIN

By Steven V. Ley* and Michael Mahon

(Department of Chemistry, Imperial College, London SW7 2AY)

SUMMARY: Starting from 5,5,9-trimethyl-trans-1-decalone (4), short and highly efficient syntheses of three drimane natural products, euryfuran (1), valdiviolide (2), and confertifolin (3) have been developed

The biological activity associated with a number of drimane natural products has stimulated considerable recent interest in their synthesis. Here, we report the preparation of eury-furan (1) and show how this molecule can also be used as a precursor for two other natural compounds (2) and (3).

The <u>trans</u>-decalone (4)² was formylated in the usual way with ethylformate/NaH to give (5)^{1e,f,3} after 12 h at room temperature. This compound was subsequently converted to the n-butyl-thiomethylene derivative (6), m.p. 60-62°C, in 85% overall yield from (4). Treatment of (6) with trimethylsulphonium methylide in dimethoxyethane at -78°C gave the dihydrofuran (7)⁴ (<u>via</u> rearrangement of the intermediate epoxide) which on standing (35°C, 12 h),or brief treatment with HgSO₄, gave euryfuran (1) directly in 70% yield as an oil after flash chromatography. The high field (250 MHz)¹H n.m.r. spectrum of (1) was identical in all respects to the natural product which has been recently isolated from a number of marine sources^{1k,5,9,†}.

Photooxygenation of (1) in the presence of 2,6-lutidine gave valdiviolide (2), m.p. $160-168^{\circ}$ C, as a 2.1 mixture of $11\alpha:11\beta$ hydroxy isomers in 90% yield. The authentic natural material, isolated from <u>Drimys winters</u> 7^{\dagger} , was shown to have specifically the 11α configuration. The formation of (2) from (1) was expected on mechanistic grounds in that the initial attack of singlet oxygen should lead predominantly to the α -endoperoxide, by addition to the least hindered face, which then, on removal of the more exposed methine proton at C-12, collapses to (2).

(a) HCO_2Et , NaH, benzene, RT, 12 h; (b) nBuSH, pTSA, benzene, 2h, Δ , (c) $(\text{CH}_3)_2\dot{5}\text{-C}\bar{\text{H}}_2$, -78°C , 10 min; (d) 35°C , 12 h or HgSO_4 , 1 eq, DME, RT, 10 min, (e) O_2 , hv, eosin, 25°C , 4h, 300 watt quartz iodine lamp, $^{\text{t}}\text{BuOH}$: 2,6-lutidine, 2 : 1; (f) Br_2 , MeOH, O°C , 30 min; (g) 10% HCl in acetone, RT, 30 min.

Oxidation of euryfuran (1) with bromine in methanol gave (8) in 92% yield as a mixture of all possible isomers. Treatment of (8) with 10% hydrochloric acid gave confertifolin (3), mp. 120-123°C, in 75% yield, again identical to the natural product 8[‡]. Also isolated from this reaction was a small amount (10%) of the other regionsomer, i.e. isodrimenin (9). The formation of (3) from (8) is rationalised as a facile 1,4-elimination of methanol via loss of the more accessible proton and sterically more congested methoxyl group. Further reactions of (1) will be reported in full at a later date.

We thank the S.R.C. for research support, Dr. D.J. Lester for the preparation of the decalone (4), and D. Neuhaus for high field n.m.r. spectra.

REFERENCES

- S.P. Tanis and K. Nakanishi, J. Am. Chem. Soc., 1979, 101, 4398; (b) A. Ohsuka and A. Matsukawa, Chem. Lett., 1979, 635, (c) T. Nakata, H. Akita, T. Naito, and T. Oishi, J. Am. Chem. Soc., 1979, 101, 4400; (d) A Kimura and S. Isoe, 22nd Symposium on the Chemistry of Natural Products, Fukuoka 1979, 198; (e) A.S. Kende and T J. Blacklock, Tetrahedron Lett., 1980, 3119; (f) D.J. Goldsmith and H.S. Kezar III, Tetrahedron Lett., 1980, 3543; (g) S.C. Howell, S.V. Ley, M. Mahon, and P.A. Worthington, J. Chem. Soc. Chem. Commun., 1981, 507; (h) M. Jallali-Naini, G. Boussac, P. Lemaitre, M. Larcheveque, D. Guillerm, and J-Y. Lallemand, Tetrahedron Lett., 1981, 2995; (i) L.P.J. Burton and J.D. White, J. Am. Chem. Soc., 1981, 103, 3226; (j) S.V. Ley and M. Mahon, Tetrahedron Lett., 1981, in press; (k) H. Akita, T. Naito, and T. Oishi, Chem. Lett., 1979, 1365, (l) T. Naito, T. Nakata, H. Akita, and T. Oishi, Chem. Lett., 1980, 445.
- D.L Snitman, M-Y. Tsai, D.S. Watt, C.L. Edwards, and P.L. Stotter, <u>J. Org. Chem.</u>, 1979, 44, 2838
- 3. N. Ototani, T. Kato, and Y. Kitahara, Bull. Chem. Soc. Jap., 1967, 40, 1730
- 4. M.E. Garst and T.A. Spencer, J. Am. Chem. Soc., 1973, 95, 250.
- 5. (a) M.S. Henderson, R McCrindle, and D. McMaster, Can. J. Chem., 1973, 51, 1346;
 (b) Y. Asakawa and T. Takemoto, Experientia, 1979, 35, 1420;
 (c) T. Nakano and M.A. Maillo, Syn. Commun., 1981, 11, 463.
- 6. E.J. Corey, D.N. Crouse, and J.E. Anderson, <u>J. Org. Chem.</u>, 1975, 40, 2140.
- 7. H.H. Appel, R.P.M. Bond, and K.H. Overton, Tetrahedron, 1963, 19, 635.
- 8. H.H. Appel, J.D. Connolly, K.H. Overton, and R.P.M. Bond, <u>J. Chem. Soc</u>., 1960, 4685
- 9. G. Cimino, S. De Rosa, S. De Stefano, and G. Sodano, Tetrahedron Lett., 1981, 1271.

NOTES

- t We thank Professor D.J Faulkner, Scripps Institute of Oceanography California, for a kind exchange of information prior to publication. Paper submitted to J. Org. Chem., with J.E. Hochlowski, R.P. Walker, and C. Ireland.
- We thank Professor K.H. Overton, University of Glasgow, for providing comparison samples of valdiviolide and confertifolin.

250 MHz 1 H n.m.r. (CDC1 $_{3}$)

Euryfuran: 0.91 (3H, s), 0.94 (3H, s), 1.21 (3H, s), 1.2-2.0 (9H, m), 2.5 (1H,dddd, J 2, 7.5 11.5, and 16 Hz), 2.77 (1H, dddd, J 1, 1.5, 6.5, and 16 Hz), 7.05 (1H, dd, J 2, 2 Hz), 7.07 (1H, d, J 2 Hz).

Valdiviolide: 0.91 (3H, s), 0.92 (3H, s), 1.25 (3H, s), 1.1-2.0 (9H, m), 2.13 (1H, m), 2.38 (1H, m), 3.95 (1H, brs -OH), 6.09 (1H, m).

Confertifolin: 0.92 (3H, s), 0.96 (3H, s), 1.17 (3H, s), 1.1-2.0 (9H, m), 2.15 (1H, m), 2.4 (1H, m), 4.65 (1H, ddd, J 2, 3.5, and 17.5 Hz), 4.75 (1H, ddd, J 3, 3, and 17.5 Hz).

(Received in UK 28 August 1981)